Neurites orientation dispersion is associated with reading skill

Nabin Koirala1, Meaghan Perdue1,2, Xing Su1, Elena Grigorenko1,3, Nicole Landi2,3

1Haskins Laboratories, New Haven, Connecticut, United States
2Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States
3Department of Psychology, University of Houston, Houston, Texas, United States

Introduction:

• Dyslexia is a common neurodevelopmental disorder characterized by difficulties with reading and spelling and affecting around 5-10% of the school aged children1,2.
• Several studies have explored neuroanatomic (brain structure) correlates of dyslexia and reading skill and have shown various white matter properties to be correlated with both phonological skills and reading skills3,4.
• Mean diffusivity (MD) and fractional anisotropy (FA) are widely used surrogate measures with high sensitivity to tissue microstructural changes; however, they lack specificity for individual tissue microstructure features.
• Here, we investigated neurite orientation dispersion and density in order to exploring the underlying specific microstructural features more directly.

Methods:

• Diffusion weighted images (DWI) and anatomical MPRAGE T1 images were obtained from 72 children.

Subjects (N)

<table>
<thead>
<tr>
<th>Subjects (N)</th>
<th>Age (years)</th>
<th>Sex</th>
<th>DWI protocol</th>
<th>T1 - MPRAGE protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>10.03 ± 3.45</td>
<td>15 F; 37 M</td>
<td>1.8 mm isotropic voxel; 64 directions; b=0, 1000, 2000</td>
<td>TR = 2500 ms; TE = 3.15 ms; 0.8 mm isotropic voxel; flip angle = 8</td>
</tr>
</tbody>
</table>

• A battery of behavioral and neuropsychological measures including Test of Word Reading Efficiency (TOWRE-2) and Comprehensive Test of Phonological Processing (CTOPP-2) was obtained.

• The imaging quality metrics of the obtained MRI data - Contrast to Noise Ratio (CNR), Average Absolute and Relative Motion (AM & RM) of each volume were computed.

• Neurite orientation dispersion index (ODI), influenced by dispersion of axons and dendrites in the intracellular compartment ; 0 to 1; 0 = well-aligned neurites, 1 = highly dispersed neurites and neurite density index (NDI), influenced by density of axons and dendrites based on intracellular diffusion 0 to 1; 0 = most extracellular diffusion, 1 = most intracellular diffusion) were obtained from 22 major tracts in human brain.

• All of the above-mentioned parameters were obtained using FSL (ver. 6.1.0) and NODDI toolbox5,6.

• Partial correlation was performed using age, sex, and image quality metrics (CNR, AM and RM) as covariates between Neurite indices (ODI and NDI) and measures of reading and phonological skills (TOWRE and CTOPP).

Conclusions:

• We found that better reading and phonological processing skills are associated with greater tract coherence (lower ODI index).

• Our findings are consistent with prior findings of associations between reading-related skills and WM integrity in tracts that link hubs of the reading network.

• We suggest that neurite complexity could be a useful tool for inferring specific white matter tissue microstructure and may promote better understanding of relations between brain structure and behavior.

References: